
WSRP
Web Services for Remote Portlets

Dave Landers
WebLogic Portal Architect
BEA Systems, Inc.

Session Goals
 Basic WSRP description

Outline of protocol
Why / when WSRP is useful

 Developer best practices
Deploy your portlets locally or with WSRP
Information to avoid problems

 Non-Goals
Implementing a WSRP-enabled Portal
Reading WSRP SOAP messages

Overview

What I s WSRP?
 An OASIS standard

Version 1.0: August, 2003
Version 2.0: In the worksÉ .

 Aligned with other portlet specifications
JSR-168: Java Portlet Specification
.NET
etc.

Web Services for Remote Portlets

 Web Service
A Protocol for communications
A Contract for behavior

 Portlets
User Interfaces aggregated in a portal
Mini-applications, displays, widgets, etc.

 Remote
Portlets are hosted separately from the Portal

What Can WSRP Do?
 Deliver portlets to multiple portals
 Aggregate portlets from several providers
 Provide a UI-oriented service

Rather than data- or logic- based services

 Unify Portlet standards
Ensure concepts and data exchanged are

aligned with other standards in both the
portal and web service arenas.

WSRP Overview - Goals

Why WSRP?
 Aggregate

Portlets from several sources
¥ And maybe deployed on different platforms

 Centralize
Access for your users
Unify several individual portals into one Òmaster portalÓ

¥ Unify your intra-net

 Decouple
Portals from portlets; Portlets from each other
Helps with: Deployment, Administration, Development,

Upgrade, etc.

WSRP Support
 Apache WSRP4J
 BEA WebLogic Portal
 BEA AquaLogic User

Interaction (Plumtree)
 Clickmarks
 eXo (open source)
 Fujitsu
 Gluecode
 IBM WebSphere Portal
 Intrafinity

 Liferay (open source)
 Microsoft SharePoint
 NetUnity
 OracleAS Portal
 SAP
 Sun
 uPortal (open source)
 Vignette
 webMethods
 and more É

A UI Oriented Service
 Much Higher level than other services
 Compare and Contrast:

Data or Logic services
¥ Retrieve data
¥ Interact with business logic functions
¥ Each user builds another UI

WSRP
¥ Retrieve the UI markup
¥ Interact with the UI
¥ Hides the details of data or logic, focuses on the UI

WSRP Basics

Basic WSRP Operations
 Get Markup

HTML fragments

 Handle interactions
Forms, links, etc.

 Service Description
Producer advertises its capabilities and requirements

 Registration
Consumer registers with Producer

 Customization
Of portlets

Producer and Consumer
 Producer

The Web Service
Offers one or more Portlets
Not necessarily a Portal itself

 Consumer
The Web Service Client
Offers Portlets from one or more Producers
Is usually a Portal
Mediates interaction between User and Producer

WSRP Interfaces
 WSRP defines 4 interfaces (WSDL)

Service Description *
Registration
Markup *
Portlet Management

¥ Only two are required (*)
¥ Not all operations of these are required

 Different support requirements for Producers
and Consumers
Several levels of functionality / complexity

Service Description Interface
 Required
 Producer provides its description

Capabilities
Requirements

¥ Is registration required?
¥ Require cookie initialization

Portlet offerings

Registration Interface
 Optional

Producers are not required to implement it
Producer may require it of Consumers

 Consumers register with Producer
May include Òout-of-bandÓ communications

¥ Phone calls or email or paymentÉ

¥ É to get registration keys, etc.

 Registration can be used by Producer to
Provide enhanced offerings to some Consumers
Provide Consumer-specific offerings
Customize portlets per-Consumer

Markup Interface
 Required

The Main Thing

 Get Markup
The display or UI to render

 Perform Interaction
As in, post a form

 Some Session and Cookie stuff

Portlet Management Interface
 Optional
 Allows Consumers to manage Portlets
 Portlet descriptions
 Persistent state

Personalization
Get / Set / Describe properties

 Portlet lifecycle
Cloning and destroying portlet instances

Two-Step Protocol
 WSRP uses a ÒTwo StepÓ protocol for

interaction
performBlockingInteraction

¥ Like a HTTP POST
¥ Returns new portlet state, etc.
¥ JSR-168: processAction()

getMarkup
¥ Using any state returned by Producer
¥ Returns markup to display
¥ Repeated calls return same markup
¥ JSR-168: render()

Doing the Two Step
 Allows Consumer to get markup as needed

Consumer may repeatedly render the portlet
¥ While user interacts with other portlets
¥ This requires separation between interaction and

rendering

 Producer may return markup with
performBlockingInteraction response
Optional optimization

Caching of Markup
 Consumer may cache markup

Avoid repeated calls to getMarkup
Producer informs Consumer if caching is OK

¥ Returns CacheControl element with markup
Expiration of markup validity

User scope (shared or not)

 Producers may also cache
As appropriate

Portlet State
 Transient state

Navigational state
¥ ÒWhere are weÓ in a portlet navigation cycle
¥ Bookmarkable

Session state
¥ Similar to HTTP Session data

 Persistent state
Properties exposed to Consumer
Some other state (database, etc.)

State Management
 Consumer and Producer cooperate to

maintain Portlet State
 Producer returns to Consumer

Navigational State
Session ID
Handle of cloned portlets

 Consumers return these with future requests

Personalization
 Portlets can be personalized

Properties (persistent state) stored per-user
User might have several instances of the same

portlet, each customized differently
JSR-168: PortletPreferences

 Requires new portlet instance
Unique portlet handle identifies instance

¥ Consumer-Configured portlet

Portlets cloned to make instances

Portlet Cloning
 Portlet handle returned by Service

Description is generic or shared
Producer-Offered portlet
Not customized

 When changing persistent state, Producer
must:
Clone portlet
Return new portlet handle
Consumer uses this handle from now on

Cloning Mechanisms
 Explicit

Portlet Management Interface: clonePortlet

 Implicit
Markup Interface: performBlockingAction

with cloneBeforeWrite

Producer
Offered

(Not ModiÞable)

Destroyed

performBlockingAction
cloneBeforeWrite

clonePortlet

clonePortlet

destroyPortlet

Consumer
ConÞgured

(ModiÞable)

setPortletProperties

WSRP Basics - Summary
 Interfaces

Many optional levels of support

 Markup and Interaction
Two Step Protocol

 State
Transient and Persistent

 Cloning Portlets
So they can be personalized

Writing for WSRP

Best Practices

Writing Portlets for WSRP
 I f you write for WSRP, your portlets will still work

as local portlets
 You can write local portlets that will break with

WSRP
 Biggest issues are

Rewriting URLs
Name-spacing of identifiers
Assuming things about the container

¥ Availability of HTTP Request and Session data

Assuming relationships between portlets
¥ Where portlets are deployed (relative to each other)
¥ Using Request or Session data for communications

Markup Considerations
 Portlet returns Markup Fragment

Usually assembled into a full page (portal)
¥ By ConsumerÕs Portal

Just like local portlets

 Implications
Markup Fragment is not a full document (page)
Identifiers must co-exist with remainder of page

¥ Named attributes
¥ Javascript functions, variables, etc.

Markup as Fragments
 Some tags are not allowed

<html> <body> <head>

<title> <frame> <frameset>

 Consumer will assemble fragments into
larger portal page

Names and Identifiers
 HTML forms, Javascript methods, variables

Several portlets are aggregated on a portal page
Many names need to be unique to a portlet

¥ Avoid collisions between Portlets
¥ Even two instances of same portlet

Namespace Encoding
 Consumer Rewriting

Portlet prefixes names with Òwsrp_rewrite_Ó
Consumer replaces this with something unique

¥ And valid for Javascript variables, etc.

 Producer Encoding
Portlet uses namespacePrefix provided by the

Consumer to prefix tokens in the markup

 Best Practice for Portlet Developers
Use available APIs and Tags

¥ JSR-168: renderResponse.getNamespace() + “foo”

URLs in Remote Portlets
 URLs used to render portlets or perform

actions (POST)
Can not be ÒnormalÓ URLs
Refer to ConsumerÕs portal
May need to ÒtargetÓ a specific portlet
Need to forward to Producer via WSRP

 No way for portlet developer to know what
the URL should look like

Consumer URL Rewriting
 Required functionality by WSRP
 Portlet writes URLs using tokens

Consumer replaces tokens to make URLs
wsrp_rewrite?wsrp-urlType=render&
wsrp-mode=help&
wsrp-windowState=maximized/wsrp_rewrite

 URLs provided by Producer contain tokens for
Type of URL (render, resource, action, etc.)
Portlet State
Mode, Window State
É etc.
And no specific host names, etc.

Producer URL Rewriting
 Optional in WSRP
 Consumer supplies templates to Producer for

various types of URLs
http://consumer.com/path/{wsrp-urlType}
?mode={wsrp-mode}&var=name& ...

 Producer rewrites URLs, replacing { values}
in template

 Probably more efficient than consumer
rewriting

URLs in Portlets
 DonÕt hard-code them

Except for absolute off-site URLs (links)

 Anything pointing to the Portal or Portlet
must be rewritten
By Consumer or Producer

 Best Practice for Portlet developers
Use available APIs and Tags

¥ Let the Producer / Consumer figure it out
¥ JSR-168: createActionURL()

and createRenderURL()

Dynamic Client-Side Code
 Dynamically generated URLs and Identifiers

have problems
Those computed by client-side (Javascript) code
Javascript generated by Producer must

understand consumer templates
Store URL templates and namespace in the

markup (script)
¥ Compute URLs and names using these

Request and Session Data
 May not be accessible by all WSRP portlets

Portlets may be remote from each other
May not be accessed by same Request

¥ Is a Web Service request (may not see HTTP)
¥ HTTP Request Òbelongs toÓ the Portal

DonÕt use Request attr ibutes or Session data as
inter-portlet communication scheme

¥ If you mustÉ Session-sharing portlets should be
ÒgroupedÓ on same Producer
Ensure your Producer supports this

Inter-Portlet Communications
 Sometimes, portlets must interact

Two views of same data
Send events to each other
É or otherwise cooperate

 Can be difficult to arrange
Timing is especially difficult

¥ Rendering of portlets is not sequential or synchronous

 Remote adds an extra complication

Inter-Portlet Relationships
 May need specific deployment requirements

All related portlets on same Producer
All portlets run in one JVM? (clustering issues)

 Some vendors may have useful features
WebLogic Portal has IPC Events

¥ And associated WSRP Extension

 WSRP 2.0 is addressing portlet events
I suggest designing any inter-portlet

communications as events

CSS Style Sheets
 WSRP specifies definitions for CSS

Portlets from several sources can have a
common look-and-feel

¥ Local portlets
¥ Several Producers

Cover a lot of types
¥ Fonts, Tables, Forms, Messages, Links, Menus, etc.
¥ See WSRP Specification for full list (Section 10)

 Portlet container should offer same stylesÉ

Optional WSRP Features
 Consumers must support more than Producers

But there are still a lot of options

 Portlet Developers
Know features of your Producer

¥ Cloning (personalization) support
¥ Portlet persistent state

¥ Modes and window states

 Portal Administrators
Understand your Consumer features
Choose a Consumer that is capable ÒenoughÓ

¥ To handle Producers you expect

WSRP and Security
 Several concerns

Registration
Authentication
Authorization
Privacy
Integrity

 Same issues as other Web Services
Mostly handled outside WSRP

Web Services Security
 Document level security

WS-Security
SAML
XML-Signature
XML-Encryption

 Transport level security
HTTPS

 Consumer Authentication
SSL with Client certificates

WSRP Security
 Consumer Authorization

Registration Interface
Including any necessary out-of-band process

 End-User Access Control
Consumer-side

¥ Portal login, entitlements, etc.

Producer-side
¥ Using userContextKey in Markup Request

 Insecure, not authenticated - real purpose is personalization

¥ Consumer / Producer may use Single Sign-On

Error Handling Suggestions
 Handle errors in your portlet

Gracefully
¥ Suitable business message

Rather than propagating exceptions
¥ Exception --> Producer error --> WSRP Fault -->

Consumer error --> User has no idea what happened

 Use meaningful error pages on Consumer
side
Rather than relying on ÒStackTrace (or WSRP

Fault) Inside PortletÓ pattern

Debugging
 Two usual problems

The portlet itself
¥ Debug as local portlet (i.e. in ProducerÕs Portal)

Problems when portlet deployed with WSRP
¥ Lots of layers to unravel

¥ Snoop on SOAP messages

¥ Producer faults described in WSRP Primer

Remember issues with
¥ URL Rewriting

¥ Identifier Namespacing

¥ Request and Session reliance

¥ Consumer / Producer complexity level mismatch

Summary
 Decoupling Portlets can simplify Deployment,

Administration, I nteroperability,
Development Lifecycle, etc.

 Aggregate Portlets from several sources
 Writing for WSRP will not break local usage

Gives you options

 WSRP attempts to unify concepts in other
Portlet specifications
JSR-168, .NET, etc.

References
 Oasis

http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsrp

¥ Specification
¥ White Papers
¥ Primer

Other Related Sessions
 Noel Bergman

Introduction to Portlet Programming with
JSR-168

 Kelvin Lawrence
Web Services Advanced Topics

• Security

The End
Please fill out the evaluations

dave.landers@bea.com

