
WSRP
Web Services for Remote Portlets

Dave Landers
WebLogic Portal Architect
BEA Systems, Inc.

Session Goals
 Basic WSRP description

Outline of protocol
Why / when WSRP is useful

 Developer best practices
Deploy your portlets locally or with WSRP
Information to avoid problems

 Non-Goals
Implementing a WSRP-enabled Portal
Reading WSRP SOAP messages

Overview

What I s WSRP?
 An OASIS standard

Version 1.0: August, 2003
Version 2.0: In the worksÉ .

 Aligned with other portlet specifications
JSR-168: Java Portlet Specification
.NET
etc.

Web Services for Remote Portlets

 Web Service
A Protocol for communications
A Contract for behavior

 Portlets
User Interfaces aggregated in a portal
Mini-applications, displays, widgets, etc.

 Remote
Portlets are hosted separately from the Portal

What Can WSRP Do?
 Deliver portlets to multiple portals
 Aggregate portlets from several providers
 Provide a UI-oriented service

Rather than data- or logic- based services

 Unify Portlet standards
Ensure concepts and data exchanged are

aligned with other standards in both the
portal and web service arenas.

WSRP Overview - Goals

Why WSRP?
 Aggregate

Portlets from several sources
¥ And maybe deployed on different platforms

 Centralize
Access for your users
Unify several individual portals into one Òmaster portalÓ

¥ Unify your intra-net

 Decouple
Portals from portlets; Portlets from each other
Helps with: Deployment, Administration, Development,

Upgrade, etc.

WSRP Support
 Apache WSRP4J
 BEA WebLogic Portal
 BEA AquaLogic User

Interaction (Plumtree)
 Clickmarks
 eXo (open source)
 Fujitsu
 Gluecode
 IBM WebSphere Portal
 Intrafinity

 Liferay (open source)
 Microsoft SharePoint
 NetUnity
 OracleAS Portal
 SAP
 Sun
 uPortal (open source)
 Vignette
 webMethods
 and more É

A UI Oriented Service
 Much Higher level than other services
 Compare and Contrast:

Data or Logic services
¥ Retrieve data
¥ Interact with business logic functions
¥ Each user builds another UI

WSRP
¥ Retrieve the UI markup
¥ Interact with the UI
¥ Hides the details of data or logic, focuses on the UI

WSRP Basics

Basic WSRP Operations
 Get Markup

HTML fragments

 Handle interactions
Forms, links, etc.

 Service Description
Producer advertises its capabilities and requirements

 Registration
Consumer registers with Producer

 Customization
Of portlets

Producer and Consumer
 Producer

The Web Service
Offers one or more Portlets
Not necessarily a Portal itself

 Consumer
The Web Service Client
Offers Portlets from one or more Producers
Is usually a Portal
Mediates interaction between User and Producer

WSRP Interfaces
 WSRP defines 4 interfaces (WSDL)

Service Description *
Registration
Markup *
Portlet Management

¥ Only two are required (*)
¥ Not all operations of these are required

 Different support requirements for Producers
and Consumers
Several levels of functionality / complexity

Service Description Interface
 Required
 Producer provides its description

Capabilities
Requirements

¥ Is registration required?
¥ Require cookie initialization

Portlet offerings

Registration Interface
 Optional

Producers are not required to implement it
Producer may require it of Consumers

 Consumers register with Producer
May include Òout-of-bandÓ communications

¥ Phone calls or email or paymentÉ

¥ É to get registration keys, etc.

 Registration can be used by Producer to
Provide enhanced offerings to some Consumers
Provide Consumer-specific offerings
Customize portlets per-Consumer

Markup Interface
 Required

The Main Thing

 Get Markup
The display or UI to render

 Perform Interaction
As in, post a form

 Some Session and Cookie stuff

Portlet Management Interface
 Optional
 Allows Consumers to manage Portlets
 Portlet descriptions
 Persistent state

Personalization
Get / Set / Describe properties

 Portlet lifecycle
Cloning and destroying portlet instances

Two-Step Protocol
 WSRP uses a ÒTwo StepÓ protocol for

interaction
performBlockingInteraction

¥ Like a HTTP POST
¥ Returns new portlet state, etc.
¥ JSR-168: processAction()

getMarkup
¥ Using any state returned by Producer
¥ Returns markup to display
¥ Repeated calls return same markup
¥ JSR-168: render()

Doing the Two Step
 Allows Consumer to get markup as needed

Consumer may repeatedly render the portlet
¥ While user interacts with other portlets
¥ This requires separation between interaction and

rendering

 Producer may return markup with
performBlockingInteraction response
Optional optimization

Caching of Markup
 Consumer may cache markup

Avoid repeated calls to getMarkup
Producer informs Consumer if caching is OK

¥ Returns CacheControl element with markup
Expiration of markup validity

User scope (shared or not)

 Producers may also cache
As appropriate

Portlet State
 Transient state

Navigational state
¥ ÒWhere are weÓ in a portlet navigation cycle
¥ Bookmarkable

Session state
¥ Similar to HTTP Session data

 Persistent state
Properties exposed to Consumer
Some other state (database, etc.)

State Management
 Consumer and Producer cooperate to

maintain Portlet State
 Producer returns to Consumer

Navigational State
Session ID
Handle of cloned portlets

 Consumers return these with future requests

Personalization
 Portlets can be personalized

Properties (persistent state) stored per-user
User might have several instances of the same

portlet, each customized differently
JSR-168: PortletPreferences

 Requires new portlet instance
Unique portlet handle identifies instance

¥ Consumer-Configured portlet

Portlets cloned to make instances

Portlet Cloning
 Portlet handle returned by Service

Description is generic or shared
Producer-Offered portlet
Not customized

 When changing persistent state, Producer
must:
Clone portlet
Return new portlet handle
Consumer uses this handle from now on

Cloning Mechanisms
 Explicit

Portlet Management Interface: clonePortlet

 Implicit
Markup Interface: performBlockingAction

with cloneBeforeWrite

Producer
Offered

(Not ModiÞable)

Destroyed

performBlockingAction
cloneBeforeWrite

clonePortlet

clonePortlet

destroyPortlet

Consumer
ConÞgured

(ModiÞable)

setPortletProperties

WSRP Basics - Summary
 Interfaces

Many optional levels of support

 Markup and Interaction
Two Step Protocol

 State
Transient and Persistent

 Cloning Portlets
So they can be personalized

Writing for WSRP

Best Practices

Writing Portlets for WSRP
 I f you write for WSRP, your portlets will still work

as local portlets
 You can write local portlets that will break with

WSRP
 Biggest issues are

Rewriting URLs
Name-spacing of identifiers
Assuming things about the container

¥ Availability of HTTP Request and Session data

Assuming relationships between portlets
¥ Where portlets are deployed (relative to each other)
¥ Using Request or Session data for communications

Markup Considerations
 Portlet returns Markup Fragment

Usually assembled into a full page (portal)
¥ By ConsumerÕs Portal

Just like local portlets

 Implications
Markup Fragment is not a full document (page)
Identifiers must co-exist with remainder of page

¥ Named attributes
¥ Javascript functions, variables, etc.

Markup as Fragments
 Some tags are not allowed

<html> <body> <head>

<title> <frame> <frameset>

 Consumer will assemble fragments into
larger portal page

Names and Identifiers
 HTML forms, Javascript methods, variables

Several portlets are aggregated on a portal page
Many names need to be unique to a portlet

¥ Avoid collisions between Portlets
¥ Even two instances of same portlet

Namespace Encoding
 Consumer Rewriting

Portlet prefixes names with Òwsrp_rewrite_Ó
Consumer replaces this with something unique

¥ And valid for Javascript variables, etc.

 Producer Encoding
Portlet uses namespacePrefix provided by the

Consumer to prefix tokens in the markup

 Best Practice for Portlet Developers
Use available APIs and Tags

¥ JSR-168: renderResponse.getNamespace() + “foo”

URLs in Remote Portlets
 URLs used to render portlets or perform

actions (POST)
Can not be ÒnormalÓ URLs
Refer to ConsumerÕs portal
May need to ÒtargetÓ a specific portlet
Need to forward to Producer via WSRP

 No way for portlet developer to know what
the URL should look like

Consumer URL Rewriting
 Required functionality by WSRP
 Portlet writes URLs using tokens

Consumer replaces tokens to make URLs
wsrp_rewrite?wsrp-urlType=render&
wsrp-mode=help&
wsrp-windowState=maximized/wsrp_rewrite

 URLs provided by Producer contain tokens for
Type of URL (render, resource, action, etc.)
Portlet State
Mode, Window State
É etc.
And no specific host names, etc.

Producer URL Rewriting
 Optional in WSRP
 Consumer supplies templates to Producer for

various types of URLs
http://consumer.com/path/{wsrp-urlType}
?mode={wsrp-mode}&var=name& ...

 Producer rewrites URLs, replacing { values}
in template

 Probably more efficient than consumer
rewriting

URLs in Portlets
 DonÕt hard-code them

Except for absolute off-site URLs (links)

 Anything pointing to the Portal or Portlet
must be rewritten
By Consumer or Producer

 Best Practice for Portlet developers
Use available APIs and Tags

¥ Let the Producer / Consumer figure it out
¥ JSR-168: createActionURL()

and createRenderURL()

Dynamic Client-Side Code
 Dynamically generated URLs and Identifiers

have problems
Those computed by client-side (Javascript) code
Javascript generated by Producer must

understand consumer templates
Store URL templates and namespace in the

markup (script)
¥ Compute URLs and names using these

Request and Session Data
 May not be accessible by all WSRP portlets

Portlets may be remote from each other
May not be accessed by same Request

¥ Is a Web Service request (may not see HTTP)
¥ HTTP Request Òbelongs toÓ the Portal

DonÕt use Request attr ibutes or Session data as
inter-portlet communication scheme

¥ If you mustÉ Session-sharing portlets should be
ÒgroupedÓ on same Producer
Ensure your Producer supports this

Inter-Portlet Communications
 Sometimes, portlets must interact

Two views of same data
Send events to each other
É or otherwise cooperate

 Can be difficult to arrange
Timing is especially difficult

¥ Rendering of portlets is not sequential or synchronous

 Remote adds an extra complication

Inter-Portlet Relationships
 May need specific deployment requirements

All related portlets on same Producer
All portlets run in one JVM? (clustering issues)

 Some vendors may have useful features
WebLogic Portal has IPC Events

¥ And associated WSRP Extension

 WSRP 2.0 is addressing portlet events
I suggest designing any inter-portlet

communications as events

CSS Style Sheets
 WSRP specifies definitions for CSS

Portlets from several sources can have a
common look-and-feel

¥ Local portlets
¥ Several Producers

Cover a lot of types
¥ Fonts, Tables, Forms, Messages, Links, Menus, etc.
¥ See WSRP Specification for full list (Section 10)

 Portlet container should offer same stylesÉ

Optional WSRP Features
 Consumers must support more than Producers

But there are still a lot of options

 Portlet Developers
Know features of your Producer

¥ Cloning (personalization) support
¥ Portlet persistent state

¥ Modes and window states

 Portal Administrators
Understand your Consumer features
Choose a Consumer that is capable ÒenoughÓ

¥ To handle Producers you expect

WSRP and Security
 Several concerns

Registration
Authentication
Authorization
Privacy
Integrity

 Same issues as other Web Services
Mostly handled outside WSRP

Web Services Security
 Document level security

WS-Security
SAML
XML-Signature
XML-Encryption

 Transport level security
HTTPS

 Consumer Authentication
SSL with Client certificates

WSRP Security
 Consumer Authorization

Registration Interface
Including any necessary out-of-band process

 End-User Access Control
Consumer-side

¥ Portal login, entitlements, etc.

Producer-side
¥ Using userContextKey in Markup Request

 Insecure, not authenticated - real purpose is personalization

¥ Consumer / Producer may use Single Sign-On

Error Handling Suggestions
 Handle errors in your portlet

Gracefully
¥ Suitable business message

Rather than propagating exceptions
¥ Exception --> Producer error --> WSRP Fault -->

Consumer error --> User has no idea what happened

 Use meaningful error pages on Consumer
side
Rather than relying on ÒStackTrace (or WSRP

Fault) Inside PortletÓ pattern

Debugging
 Two usual problems

The portlet itself
¥ Debug as local portlet (i.e. in ProducerÕs Portal)

Problems when portlet deployed with WSRP
¥ Lots of layers to unravel

¥ Snoop on SOAP messages

¥ Producer faults described in WSRP Primer

Remember issues with
¥ URL Rewriting

¥ Identifier Namespacing

¥ Request and Session reliance

¥ Consumer / Producer complexity level mismatch

Summary
 Decoupling Portlets can simplify Deployment,

Administration, I nteroperability,
Development Lifecycle, etc.

 Aggregate Portlets from several sources
 Writing for WSRP will not break local usage

Gives you options

 WSRP attempts to unify concepts in other
Portlet specifications
JSR-168, .NET, etc.

References
 Oasis

http://www.oasis-open.org/committees/
tc_home.php?wg_abbrev=wsrp

¥ Specification
¥ White Papers
¥ Primer

Other Related Sessions
 Noel Bergman

Introduction to Portlet Programming with
JSR-168

 Kelvin Lawrence
Web Services Advanced Topics

• Security

The End
Please fill out the evaluations

dave.landers@bea.com

